Regularization of Toda lattices by Hamiltonian reduction

نویسنده

  • László Fehér
چکیده

The Toda lattice defined by the Hamiltonian H = 12 ∑n i=1 p 2 i + ∑n−1 i=1 νie qi−qi+1 with νi ∈ {±1}, which exhibits singular (blowing up) solutions if some of the νi = −1, can be viewed as the reduced system following from a symmetry reduction of a subsystem of the free particle moving on the group G = SL(n,RI ). The subsystem is T Ge, where Ge = N+AN− consists of the determinant one matrices with positive principal minors, and the reduction is based on the maximal nilpotent group N+ ×N−. Using the Bruhat decomposition we show that the full reduced system obtained from T G, which is perfectly regular, contains 2 Toda lattices. More precisely, if n is odd the reduced system contains all the possible Toda lattices having different signs for the νi. If n is even, there exist two non-isomorphic reduced systems with different constituent Toda lattices. The Toda lattices occupy non-intersecting open submanifolds in the reduced phase space, wherein they are regularized by being glued together. We find a model of the reduced phase space as a hypersurface in RI . If νi = 1 for all i, we prove for n = 2, 3, 4 that the Toda phase space associated with T Ge is a connected component of this hypersurface. The generalization of the construction for the other simple Lie groups is also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the Toda Lattice to the Volterra Lattice and Back

We discuss the relationship between the multiple Hamiltonian structures of the generalized Toda lattices and that of the generalized Volterra lattices.

متن کامل

Bi-Hamiltonian Formulation of Generalized Toda Chains

In this paper we establish for the first time the bi-Hamiltonian nature of the Toda lattices corresponding to classical simple Lie groups. These are systems that generalize the usual finite, non-periodic Toda lattice (which corresponds to a root system of type An). This generalization is due to Bogoyavlensky [2]. These systems were studied extensively in [10] where the solution of the system wa...

متن کامل

A Family of Hyperbolic Spin Calogero-moser Systems and the Spin Toda Lattices

In this paper, we continue to develop a general scheme to study a broad class of integrable systems naturally associated with the coboundary dynamical Lie algebroids. In particular, we present a factorization method for solving the Hamiltonian flows. We also present two important class of new examples, a family of hyperbolic spin Calogero-Moser systems and the spin Toda lattices. To illustrate ...

متن کامل

Multiple Hamiltonian Structure of Bogoyavlensky-toda Lattices

This paper is mainly a review of the multi–Hamiltonian nature of Toda and generalized Toda lattices corresponding to the classical simple Lie groups but it includes also some new results. The areas investigated include master symmetries, recursion operators, higher Poisson brackets, invariants and group symmetries for the systems. In addition to the positive hierarchy we also consider the negat...

متن کامل

Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices

We introduce a family of compatible Poisson brackets on the space of rational functions with denominator of a fixed degree and use it to derive a multi-Hamiltonian structure for a family of integrable lattice equations that includes both the standard and the relativistic Toda lattices. PACS 02.30, 05.45, 11.30.N

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996